Abstract

The work presented here is about employing a theory of updates to study geometrically observable changes that occur in spatial information about image sequences of a dynamic scene. The logical framework consists of a formalism for specifying the geometrical content of a scene, as well as the changes that occur in this geometry, and an algorithm for constructing a description for such changes from logical deductions. In this approach, a database state represents the available sensor data at a particular time instant. Transitions in sensor data are modeled by changes in the database and interpreted based on axioms encoding commonsense spatial reasoning. The main contribution of this work is that it provides the theoretical foundations for symbolically interpreting long sequences of sensor data transitions. For testing the framework and its implementation, the problem of interpreting rotational movements of objects in a sequence of images was used. Our experiments show that the system correctly interprets rotational movements for objects of different colors and provides satisfactory results for interpreting such movements from perceptually indistinguishable objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.