Abstract

Mainstream machine learning methods lack interpretability, explainability, incrementality, and data-economy. We propose using logic programming (LP) to rectify these problems. We discuss the FOLD family of rule-based machine learning algorithms that learn models from relational datasets as a set of default rules. These models are competitive with state-of-the-art machine learning systems in terms of accuracy and execution efficiency. We also motivate how logic programming can be useful for theory revision and explanation based learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.