Abstract
Azimuth gamma logging while drilling (LWD) is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult. This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing. By examining formation response characteristics of azimuth gamma ray (GR) curve, the preliminary formation change position is detected based on wavelet transform modulus maxima (WTMM) method, then the dynamic threshold is determined, and a set of contour points describing the formation boundary is obtained. The classification recognition model based on the long short-term memory (LSTM) is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification. Finally, relative dip angle is calculated by nonlinear least square method. Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes, improve the accuracy of formation dip interpretation, and meet the needs of real-time LWD geosteering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.