Abstract

We are concerned with the inverse problem of determining both the potential and the damping coefficient in a dissipative wave equation from boundary measurements. We establish stability estimates of logarithmic type when the measurements are given by the operator who maps the initial condition to Neumann boundary trace of the solution of the corresponding initial–boundary value problem. We build a method combining an observability inequality together with a spectral decomposition. We also apply this method to a clamped Euler–Bernoulli beam equation. Finally, we indicate how the present approach can be adapted to a heat equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.