Abstract

AbstractMeasurements of the streamwise component of the turbulent fluctuations in fully developed smooth and rough pipe flow are presented over an unprecedented Reynolds number range. For Reynolds numbers$R{e}_{\tau } \gt 20\hspace{0.167em} 000$, the streamwise Reynolds stress closely follows the scaling of the mean velocity profile, independent of the roughness, and over the same spatial extent. This observation extends the findings of a logarithmic law in the turbulence fluctuations as reported by Hultmark, Vallikivi & Smits (Phys. Rev. Lett., vol. 108, 2012) to include rough flows. The onset of the logarithmic region is found at a location where the wall distance is equal to ∼100 times the Kolmogorov length scale, which then marks sufficient scale separation for inertial scaling. Furthermore, in the logarithmic region the square root of the fourth-order moment also displays logarithmic behaviour, in accordance with the observation that the underlying probability density function is close to Gaussian in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.