Abstract
A method previously developed for one-dimensional nonrelativistic perturbation theory is extended to three-dimensional problems. This method essentially consists of performing the perturbation expansion on the logarithm of the wave function instead of on the wave function itself. It is shown that, for the first-order corrections in problems that are not reducible to one dimension, this method is equivalent to that of Sternheimer and to that of Dalgarno and Lewis. In the present approach, the higher-order corrections can be obtained in a hierarchical scheme and there exists an isomorphisim between the equation for the first-order correction and the equation for the $i\mathrm{th}$-order correction. As an illustration of the technique developed, the authors consider the hydrogen atom in an external multipole field and in two different spherically symmetric perturbation potentials, $\ensuremath{\delta}(r\ensuremath{-}a)$ and ${e}^{\ensuremath{-}\ensuremath{\alpha}r}$. The last potential is related to the problem of the screened Coulomb potential. By considering the $\ensuremath{\delta}(r\ensuremath{-}a)$-type potential, two interesting sum rules are obtained.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.