Abstract
We discuss an alternative method of performing coupling constant perturbation expansions in nonrelativistic quantum mechanics. This method, called logarithmic perturbation theory, yields new expressions for any-order corrections En to an unperturbed bound-state energy which do not involve cumbersome sums over intermediate unperturbed states. In one dimension, these corrections En can be evaluated using a simple explicit form containing a small number of integrals. In more than one dimension the approach is systematic but computations require the solution of well-defined partial differential equations. For order n=2 this equation is identical to that appearing in the method of Dalgarno and Lewis. Numerous illustrative examples are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.