Abstract
We use the theory of logarithmic line bundles to construct compactifications of spaces of roots of a line bundle on a family of curves, generalising work of a number of authors. This runs via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by Molcho and Wise). Our moduli space carries a ‘double ramification cycle’ measuring the locus where the given root is isomorphic to the trivial bundle, and we give a tautological formula for this class in the language of piecewise polynomial functions (as recently developed by Molcho–Pandharipande–Schmitt and Holmes–Schwarz).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.