Abstract

The problem of the stability of the motions of mechanical systems, described by non-linear non-autonomous systems of ordinary differential equations, is considered. Using the logarithmic matrix norm method, and constructing a reference system, the sufficient conditions for the asymptotic and exponential stability of unperturbed motion and for the stabilization of progammed motions of such systems are obtained. The problem of the asymptotic stability of a non-conservative system with two degrees of freedom is solved, taking for parametric disturbances into account. Examples of the solution of the problem of stabilizing programmed motions – for an inverted double pendulum and for a two-link manipulator on a stationary base – are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.