Abstract
This paper establishes that on the domain of outer communications of a general class of stationary and asymptotically flat Lorentzian manifolds of dimension $$d+1$$ , $$d\ge 3$$ , the local energy of solutions to the scalar wave equation $$\square _{g}{\uppsi }=0$$ decays at least with an inverse logarithmic rate. This class of Lorentzian manifolds includes (non-extremal) black hole spacetimes with no restriction on the nature of the trapped set. Spacetimes in this class are moreover allowed to have a small ergoregion, but are required to satisfy an energy boundedness statement. Without making further assumptions, this logarithmic decay rate is shown to be sharp. Our results can be viewed as a generalisation of a result of Burq, dealing with the case of the wave equation on flat space outside compact obstacles, and results of Rodnianski–Tao for asymptotically conic product Lorentzian manifolds. The proof will bridge ideas from Rodnianski and Tao (see [58]) with techniques developed in the black hole setting by Dafermos and Rodnianski (see [21, 22]). As a soft corollary of our results, we will infer an asymptotic completeness statement for the wave equation on the spacetimes considered in the case where no ergoregion is present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.