Abstract
We study various corrections of correlation functions to leading order in conformal perturbation theory, both on the cylinder and on the plane. Many problems on the cylinder are mathematically equivalent to those in the plane if we give the perturbations a position dependent scaling profile. The integrals to be done are then similar to those in the study of correlation functions with one additional insertion at the center of the profile. We will be primarily interested in the divergence structure of these corrections when computed in dimensional regularization. In particular, we show that the logarithmic divergences (enhancements) that show up in the plane under these circumstances can be understood in terms of resonant behavior in time dependent perturbation theory, for a transition between states that is induced by an oscillatory perturbation on the cylinder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.