Abstract

We study the comoving curvature perturbation R in the single-field inflation models whose potential can be approximated by a piecewise quadratic potential V(φ) by using the δN formalism. We find a general formula for R(δφ,δπ), consisting of a sum of logarithmic functions of the field perturbation δφ and the velocity perturbation δπ at the point of interest, as well as of δπ_{*} at the boundaries of each quadratic piece, which are functions of (δφ,δπ) through the equation of motion. Each logarithmic expression has an equivalent dual expression, due to the second-order nature of the equation of motion for φ. We also clarify the condition under which R(δφ,δπ) reduces to a single logarithm, which yields either the renowned "exponential tail" of the probability distribution function of R or a Gumbel-distribution-like tail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.