Abstract

The critical behavior of quantum Hall transitions in two-dimensional disordered electronic systems can be described by a class of complicated, non-unitary conformal field theories with logarithmic correlations. The nature and the physical origin of these logarithmic correlation functions remain however mysterious. Using the replica trick and the underlying symmetries of these quantum critical points, we show here how to construct non-perturbatively disorder-averaged observables in terms of Green's functions that scale logarithmically at criticality. In the case of the spin quantum Hall transition, which may occur in disordered superconductors with spin-rotation symmetry and broken time reversal invariance, we argue that our results are compatible with an alternative approach based on supersymmetry. The generalization to the Integer quantum Hall plateau transition is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call