Abstract

We show that the $L^2$ integral mean on $r\mathsf{D}$ of an analytic function in the unit disk $\mathsf{D}$ with respect to the weighted area measure $(1-|z|^2)^\alpha\,dA(z)$, where $-3\le\alpha\le0$, is a logarithmically convex function of $r$ on $(0,1)$. We also show that the range $[-3,0]$ for $\alpha$ is best possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.