Abstract

ABSTRACTThis paper studies the problem of set-point stabilisation, trajectory tracking, and formation tracking for unicycle-type vehicles by taking advantage of the exponential coordinates and the other mathematical tools provided by the Lie group setting of the special Euclidean group SE(2). Motivated by recent developments in geometric control approaches for holonomic systems, we first study the stabilisation problem for nonholonomic constrained kinematic systems by improving the logarithmic stabilising control laws in such a way that they can satisfy nonholonomic constraints too. We then extend the control design to the problem of trajectory tracking by proposing auxiliary systems and investigating the conditions for which the adjoint map in the Lie algebra preserves the velocity constraint. This leads to a global control law which is valid for general time-varying as well as non-smooth trajectories. The tracking control law is also applied to the problem of leader-follower formation tracking by constructing nonholonomic virtual leaders in the desired formation. Finally, the kinematic control law is translated to a differential drive robot using the backstepping technique. To demonstrate the effectiveness of the controllers, the numerical results are presented and the performances are compared with the other three controllers in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.