Abstract
AbstractFor general ferromagnetic Ising models whose coupling matrix has bounded spectral radius, we show that the log‐Sobolev constant satisfies a simple bound expressed only in terms of the susceptibility of the model. This bound implies very generally that the log‐Sobolev constant is uniform in the system size up to the critical point (including on lattices), without using any mixing conditions. Moreover, if the susceptibility satisfies the mean‐field bound as the critical point is approached, our bound implies that the log‐Sobolev constant depends polynomially on the distance to the critical point and on the volume. In particular, this applies to the Ising model on subsets of when .The proof uses a general criterion for the log‐Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron–Frobenius theorem, and the log‐Sobolev inequality for product Bernoulli measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.