Abstract

Multidrug-resistant (MDR) Gram-negative bacterial infections are a serious and ever-increasing threat for which limited therapeutic options exist. The bactericidal/permeability-increasing protein (BPI) is a cationic, neutrophil-derived, lipopolysaccharide (LPS)-binding protein that binds to Gram-negative bacteria (GNB) and LPS via its lipid A region. A recombinant fragment, rBPI-21, was studied extensively in clinical trials for meningococcal disease in the 1990s and exhibited no significant safety issues. In this report, a dose-dependent 1–2 log reduction of MDR Pseudomonas and Acinetobacter after 1h incubation with rBPI-21 using clinically achievable doses is described. Given the dearth of novel antimicrobials expected to emerge from the pharmaceutical pipeline in the near future, exploration of rBPI-21 to combat MDR GNB is now warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.