Abstract
Nonparametric classes of life distributions are usually based on the pattern of aging in some sense. The common parametric families of life distributions also feature monotone aging. In this paper we consider the class of log-concave distributions and the subclass of concave distributions. The work is motivated by the fact that most of the common parametric models of life distributions (including Weibull, Gamma, log-normal, Pareto, and Gompertz distributions) are log-concave, while the remaining life of maintained and old units tend to have a concave distribution. The classes of concave and log-concave distributions do not feature monotone aging. Nevertheless, these two classes are shown to have several interesting and useful properties. We examine the closure of these classes under a number of reliability operations, and provide sharp reliability bounds for nonmaintained and maintained units having life distribution belonging to these classes. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 419–433, 1999
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.