Abstract
We consider pairs (X,A), where X is a variety with klt singularities and A is a formal product of ideals on X with exponents in a fixed set that satisfies the Descending Chain Condition. We also assume that X has (formally) bounded singularities, in the sense that it is, formally locally, a subvariety in a fixed affine space defined by equations of bounded degree. We prove in this context a conjecture of Shokurov, predicting that the set of log canonical thresholds for such pairs satisfies the Ascending Chain Condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.