Abstract

AbstractThe large scale morphology and finer sub‐structure within a slowly propagating traveling ionospheric disturbance (TID) are studied using wide band trans‐ionospheric radio observations with the LOw Frequency ARray (LOFAR; van Haarlem et al., 2013, https://doi.org/10.1051/0004-6361/201220873). The observations were made under geomagnetically quiet conditions, between 0400 and 0800 on 7 January 2019, over the UK. In combination with ionograms and Global Navigation Satellite System Total Electron Content anomaly data we estimate the TID velocity to ∼60 ms−1, in a North‐westerly direction. Clearly defined substructures with oscillation periods of ∼300 s were identified within the TID, corresponding to scale sizes of 20 km. At the geometries and observing wavelengths involved, the Fresnel scale is between 3 and 4 km, hence these substructures contribute significant refractive scattering to the received LOFAR signal. The refractive scattering is strongly coherent across the LOFAR bandwidth used here (25–64 MHz). The size of these structures distinguishes them from previously identified ionospheric scintillation with LOFAR in Fallows et al. (2020), https://doi.org/10.1051/swsc/2020010, where the scale sizes of the plasma structure varied from ∼500 m to 5 km.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.