Abstract
The powder forming industry looks to produce parts of increasing geometrical complexity as it is seen as a very efficient production process. This offers new challenges as three-dimensional states of stress are induced. In particular, granular and porous materials respond very differently to tensile and compressive stresses. Since experiments conducted in the 1990s, little exploration of the Lode dependency of powders was carried out. The present work investigates the effect of Lode dependency through numerical simulation, aiming to establish whether it affects the outcome of a compaction cycle and whether further experimental study of the phenomenon may be justified. To this effect, a Lode dependent model was developed and implemented in a finite element code, then two case studies were carried out. The results show that there is little impact on the density contours within the components and the stress levels during the compaction. As the parts are ejected from the die, surface stress levels are affected and this is of great interest when studying the onset of defects in powder compacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.