Abstract

Pluripotency is a crucial feature of pluripotent stem cells, which are regulated by the core pluripotency network consisting of key transcription factors and signaling molecules. However, relatively less is known about the molecular mechanisms that modify the core pluripotency network. Here we used the CAPTURE (CRISPR Affinity Purification in situ of Regulatory Elements) to unbiasedly isolate proteins assembled on the Nanog promoter in mouse embryonic stem cells (mESCs), and then tested their functional relevance to the maintenance of mESCs and reprogramming of somatic cells. Gene ontology analysis revealed that the identified proteins, including many RNA-binding proteins (RBPs), are enriched in RNA-related functions and gene expression. ChIP-qPCR experiments confirmed that BCLAF1, FUBP1, MSH6, PARK7, PSIP1, and THRAP3 occupy the Nanog promoter region in mESCs. Knockdown experiments of these factors show that they play varying roles in self-renewal, pluripotency gene expression, and differentiation of mESCs as well as in the reprogramming of somatic cells. Our results show the utility of unbiased identification of chromatin-associated proteins on a pluripotency gene in mESCs and reveal the functional relevance of RBPs in ESC differentiation and somatic cell reprogramming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.