Abstract

The loci of the three amino acid residues that contribute their prosthetic groups to form the stable, nonreducible, trifunctional intermolecular cross-link histidinohydroxylysinonorleucine in skin collagen fibrils were identified. Two apparently homogeneous three-chained histidinohydroxylysinonorleucine cross-linked peptides were chromatographically isolated. They were obtained from a tryptic digest of denatured unreduced 6 M guanidine hydrochloride insoluble bovine skin collagen. Amino acid and sequence analyses demonstrated that the prosthetic groups of alpha 1(I)-chain Hyl-87, alpha 1(I)-chain Lys-16c, and alpha 2(I)-chain His-92 formed the cross-link. The latter results served to define the locus of the stable, nonreducible trifunctional moiety. Identical types of analyses were performed on the three-chained peptides isolated after bacterial collagenase digestion of the cross-linked tryptic peptides. This confirmed the initial identification and location of the three peptides linked by the cross-link. In addition, data reported here provide for a correction of the micromolecular structure for the alpha 2(I) chain. Stereochemical considerations concerning this trifunctional cross-link's specific locus indicate that the steric relationships between the alpha chains of skin and skeletal tissue collagens are fundamentally different and the intermolecular relationships in skin fibrils are specific for skin. The same molecular relationships also indicate that histidinohydroxylysinonorleucine links three molecules of collagen. The stereochemistry of cross-linking for skin collagen is in accordance with and explains the X-ray findings of a 65-nm periodicity found for this tissue [Stinson, R. H., & Sweeny, P. R. (1980) Biochim. Biophys. Acta 621, 158; Brodsky, B., Eikenberry, E. F., & Cassidy, K. (1980) Biochim. Biophys. Acta 621, 162].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.