Abstract

Objective. Locoregional recurrence (LRR) is one of the leading causes of treatment failure in head and neck (H&N) cancer. Accurately predicting LRR after radiotherapy is essential to achieving better treatment outcomes for patients with H&N cancer through developing personalized treatment strategies. We aim to develop an end-to-end multi-modality and multi-view feature extension method (MMFE) to predict LRR in H&N cancer. Approach. Deep learning (DL) has been widely used for building prediction models and has achieved great success. Nevertheless, 2D-based DL models inherently fail to utilize the contextual information from adjacent slices, while complicated 3D models have a substantially larger number of parameters, which require more training samples, memory and computing resources. In the proposed MMFE scheme, through the multi-view feature expansion and projection dimension reduction operations, we are able to reduce the model complexity while preserving volumetric information. Additionally, we designed a multi-modality convolutional neural network that can be trained in an end-to-end manner and can jointly optimize the use of deep features of CT, PET and clinical data to improve the model’s prediction ability. Main results. The dataset included 206 eligible patients, of which, 49 had LRR while 157 did not. The proposed MMFE method obtained a higher AUC value than the other four methods. The best prediction result was achieved when using all three modalities, which yielded an AUC value of 0.81. Significance. Comparison experiments demonstrated the superior performance of the MMFE as compared to other 2D/3D-DL-based methods. By combining CT, PET and clinical features, the MMFE could potentially identify H&N cancer patients at high risk for LRR such that personalized treatment strategy can be developed accordingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.