Abstract

To determine whether acute exposure to simulated moderate altitude alters locomotor-respiratory coupling (LRC) patterns in runners, 13 trained male distance runners performed a running economy and maximal oxygen uptake (V̇o2max) test in normoxia (NORM) and hypoxia (HYP) ([Formula: see text]= 15.8%; ~2,400 m/8,000 ft) on separate days. Running economy (RE), the degree of LRC, stride frequency-to-breathing frequency quotients (SF/fb), ratings of perceived exertion (RPE), and dyspnea were assessed at three common submaximal speeds and V̇o2max. SF/fb were significantly lower at each submaximal speed in HYP (12.9 km/h: 2.91 ± 0.20 vs. 2.45 ± 0.17, 14.3 km/h: 2.53 ± 0.17 vs. 2.21 ± 0.14, 16.1 km/h: 2.22 ± 0.14 vs. 1.95 ± 0.09; P < 0.05). The degree of LRC (range: 36-99%) in HYP was not significantly different than NORM at any of the three common submaximal speeds. However, the degree of LRC was significantly higher at V̇o2max in HYP than NORM (43.8 ± 3.4% vs. 57.1 ± 3.8%; P < 0.05). RE and RPE were similar at all running speeds. Dyspnea was significantly greater in HYP compared with NORM at 16.1 km/h ( P < 0.05). Trained distance runners are able to maintain LRC in HYP, despite increases in breathing frequency. Within this unique population, years of training may enhance and optimize the ability to maintain LRC to minimize metabolic costs and dyspnea. NEW & NOTEWORTHY Exposure to acute altitude causes increases in ventilation at rest and any submaximal exercising workload, which may alter locomotor-respiratory coupling (LRC). Our data suggest that trained distance runners can maintain LRC during acute exposure to simulated moderate altitude, even when breathing frequency is increased at any submaximal pace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.