Abstract

BackgroundFor individuals who sustain a complete motor spinal cord injury (SCI) and rely on a wheelchair as their primary mode of locomotion, overground robotic exoskeletons represent a promising solution to stand and walk again. Although overground robotic exoskeletons have gained tremendous attention over the past decade and are now being transferred from laboratories to clinical settings, their effects remain unclear given the paucity of scientific evidence and the absence of large-scale clinical trials. This study aims to examine the feasibility of a locomotor training program with an overground robotic exoskeleton in terms of recruitment, attendance, and drop-out rates as well as walking performance, learnability, and safety.MethodsIndividuals with a SCI were invited to participate in a 6 to 8-week locomotor training program with a robotic exoskeleton encompassing 18 sessions. Selected participants underwent a comprehensive screening process and completed two familiarization sessions with the robotic exoskeleton. The outcome measures were the rate of recruitment of potential participants, the rate of attendance at training sessions, the rate of drop-outs, the ability to walk with the exoskeleton, and its progression over the program as well as the adverse events.ResultsOut of 49 individuals who expressed their interest in participating in the study, only 14 initiated the program (recruitment rate = 28.6%). Of these, 13 individuals completed the program (drop-out rate = 7.1%) and attended 17.6 ± 1.1 sessions (attendance rate = 97.9%). Their greatest standing time, walking time, and number of steps taken during a session were 64.5 ± 10.2 min, 47.2 ± 11.3 min, and 1843 ± 577 steps, respectively. During the training program, these last three parameters increased by 45.3%, 102.1%, and 248.7%, respectively. At the end of the program, when walking with the exoskeleton, most participants required one therapist (85.7%), needed stand-by or contact-guard assistance (57.1%), used forearm crutches (71.4%), and reached a walking speed of 0.25 ± 0.05 m/s. Five participants reported training-related pain or stiffness in the upper extremities during the program. One participant sustained bilateral calcaneal fractures and stopped the program.ConclusionsThis study confirms that larger clinical trials investigating the effects of a locomotor training program with an overground robotic exoskeleton are feasible and relatively safe in individuals with complete motor SCI. Moreover, to optimize the recruitment rate and safety in future trials, this study now highlights the need of developing pre-training rehabilitation programs to increase passive lower extremity range of motion and standing tolerance. This study also calls for the development of clinical practice guidelines targeting fragility fracture risk assessment linked to the use of overground robotic exoskeletons.

Highlights

  • For individuals who sustain a complete motor spinal cord injury (SCI) and rely on a wheelchair as their primary mode of locomotion, overground robotic exoskeletons represent a promising solution to stand and walk again

  • This study confirms that larger clinical trials investigating the effects of a locomotor training program with an overground robotic exoskeleton are feasible and relatively safe in individuals with complete motor SCI

  • This study calls for the development of clinical practice guidelines targeting fragility fracture risk assessment linked to the use of overground robotic exoskeletons

Read more

Summary

Introduction

For individuals who sustain a complete motor spinal cord injury (SCI) and rely on a wheelchair as their primary mode of locomotion, overground robotic exoskeletons represent a promising solution to stand and walk again. For individuals who are affected by sensorimotor impairments and rely on a wheelchair as their primary mode of locomotion, overground robotic exoskeletons figure among the most promising solutions to stand and walk their effects and effectiveness remain unclear given the paucity of scientific evidence. In this population, overground robotic exoskeletons can be used for standing and walking in the context of adapted physical activity programs offered during rehabilitation or in the community. Before doing so and assessing such programs in terms of their efficacy and effectiveness, it is crucial to gain a better understanding of the factors that could potentially interfere in the process of participants’ recruitment and selection as well as in their attendance at the training sessions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call