Abstract

Background and Purpose. Previous studies suggest that individuals poststroke can achieve substantial gains in walking function following high-intensity locomotor training (LT). Recent findings also indicate practice of variable stepping tasks targeting locomotor deficits can mitigate selected impairments underlying reduced walking speeds. The goal of this study was to investigate alterations in locomotor biomechanics following 3 different LT paradigms. Methods. This secondary analysis of a randomized trial recruited individuals 18 to 85 years old and >6 months poststroke. We compared changes in spatiotemporal, joint kinematics, and kinetics following up to 30 sessions of high-intensity (>70% heart rate reserve [HRR]) LT of variable tasks targeting paretic limb and balance impairments (high-variable, HV), high-intensity LT focused only on forward walking (high-forward, HF), or low-intensity LT (<40% HRR) of variable tasks (low-variable, LV). Sagittal spatiotemporal and joint kinematics, and concentric joint powers were compared between groups. Regressions and principal component analyses were conducted to evaluate relative contributions or importance of biomechanical changes to between and within groups. Results. Biomechanical data were available on 50 participants who could walk ≥0.1 m/s on a motorized treadmill. Significant differences in spatiotemporal parameters, kinematic consistency, and kinetics were observed between HV and HF versus LV. Resultant principal component analyses were characterized by paretic powers and kinematic consistency following HV, while HF and LV were characterized by nonparetic powers. Conclusion. High-intensity LT results in greater changes in kinematics and kinetics as compared with lower-intensity interventions. The results may suggest greater paretic-limb contributions with high-intensity variable stepping training that targets specific biomechanical deficits. Clinical Trial Registration. https://clinicaltrials.gov/ Unique Identifier: NCT02507466

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.