Abstract
Patients with hereditary peripheral neuropathies exhibit characteristic deformities of the hands and feet and have difficulty ambulating. To examine to what extent neuropathic animals recapitulate these deficits, we studied trembler J (TrJ) mice, which model early-onset demyelinating neuropathy. A cohort of 4-month-old female wild type and neuropathic mice were evaluated for locomotor measurements, neuromuscular function, and skeletal muscle proteolysis and morphometry. Utilizing the DigiGait imaging system, we identified pronounced alterations in forepaw and hindpaw angles and a decrease in hindpaw area on the treadmill in neuropathic rodents. Torque production by the tibialis anterior (TA) muscle was significantly weakened and was paralleled by a decrease in myofiber cross-sectional area and an increase in muscle tissue proteolysis. Our findings in TrJ mice reflect the phenotypic presentation of the human neuropathy in which patients exhibit weakness of the TA muscle resulting in foot drop and locomotor abnormalities. Muscle Nerve 57: 664-671, 2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.