Abstract

This work investigates the capacity of the spinal cord to generate locomotion after a complete spinal section and its ability to adapt its locomotor pattern after a peripheral nerve lesion. To study this intrinsic adaptive capacity, the left lateral gastrocnemius-soleus (LGS) nerve was sectioned in three cats that expressed a stable locomotion following a complete spinal transection. The electromyograph (EMG) of multiple hindlimb muscles and reflexes, evoked by stimulating the left tibial (Tib) nerve at the ankle, were recorded before and after denervation during treadmill locomotion. Following denervation, the mean amplitude of EMG bursts of multiple hindlimb muscles increased during locomotion, similar to what is found after an identical denervation in otherwise intact cats. Reflex changes were noted in ipsilateral flexors, such as semitendinosus and tibialis anterior, but not in the ipsilateral knee extensor vastus lateralis following denervation. The present results demonstrate that the spinal cord possesses the circuitry necessary to mediate increased EMG activity in multiple hindlimb muscles and also to produce changes in reflex pathways after a muscle denervation. The similarity of changes following LGS denervation in cats with an intact and transected spinal cord suggests that spinal mechanisms play a major role in the locomotor adaptation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call