Abstract

1. Isoarecolone was approximately 250 times less potent than nicotine as an inhibitor of [3H]-nicotine binding to rat brain membranes. Isoarecolone failed to inhibit the binding of the nicotinic ligand [125I]-alpha-bungarotoxin or of the muscarinic ligand [3H]-QNB. 2. Nicotine (0.01-30 microM) evoked the release of [3H]-dopamine from striatal and frontal cortex synaptosomes, with EC50 values of approximately 0.5 microM in each case. This release was largely mecamylamine-sensitive. 3. Isoarecolone (1-200 microM) evoked predominantly mecamylamine-sensitive dopamine release from both striatal and cortical synaptosomes, with a potency at least 20 times less than that of nicotine. The maximum effect of isoarecolone was less than that of nicotine, particularly in the frontal cortex preparation. 4. In control rats treated chronically with saline, neither nicotine nor isoarecolone had clear effects on locomotor activity at the doses tested. Chronic treatment with nicotine clearly sensitized rats to the locomotor activating effect of isoarecolone was seen at a dose about 40 times larger than that of nicotine. 5. The low potency and efficacy of isoarecolone in facilitating sensitized locomotor activity resembled its lower potency and efficacy, compared with nicotine, in evoking dopamine release in vitro. The agonist profile of the nicotinic receptor population mediating dopamine release may determine the pharmacological characteristics of consequent locomotor behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.