Abstract

Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.

Highlights

  • To date it is unclear which channels the brain uses to represent and process information

  • The time-dependence of statistical measures do matter in many cases

  • We here describe the influence of a sinusoidally modulated input on the mean activities and the covariances to study the statistics of recurrently generated network activity in an oscillatory regime, ubiquitously observed in cortical activity [18]

Read more

Summary

Introduction

To date it is unclear which channels the brain uses to represent and process information. The matter is further complicated by the observation that firing rates and correlations tend to be co-modulated, as demonstrated experimentally and explained theoretically [4, 5]. If the brain employs correlated firing as a means to process or represent information, this requires in particular that the appearance of correlated events is modulated in a time-dependent manner. Such modulations have been experimentally observed in relation to the expectation of the animal to receive taskrelevant information [15, 16] or in relation to attention [17]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.