Abstract

In the present paper, the locking phenomenon induced by distance-dependent delay in ring structured neuronal networks is investigated, wherein each neuron is modeled by a FitzHugh-Nagumo neuron. Through increasing the element time delay, the different spatiotemporal patterns are observed. By calculating the interspike interval and its value that is divided by the delay of the nearest neurons, it is found that these patterns are actually the lockings between the period of spiking and the distance-dependent delay of the connected neurons. The lockings could also be revealed by the mean time lag of the neurons and in different connection topologies. Furthermore, the influences of the network size and the coupling strength are investigated, wherein the former seems to play a negligible role on these locking patterns; in contrast, too small coupling strengths will blur the boundaries of different patterns and too large ones may destroy the high ratio locking patterns. Finally, one may predict the locking order which determines the emergence order of the patterns in the networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call