Abstract

With fixed lookahead information in a simulation model, the overhead of asynchronous conservative parallel simulation lies in the mechanism used for propagating time updates in order for logical processes to safely advance their local simulation clocks. Studies have shown that a good scheduling algorithm should preferentially schedule processes containing events on the critical path. This paper introduces a lock-free algorithm for scheduling logical processes in conservative parallel discrete-event simulation on shared-memory multiprocessor machines. The algorithm uses fetch and add operations that help avoid inefficiencies associated with using locks. The lock-free algorithm is robust. Experiments show that, compared with the scheduling algorithm using locks, the lock-free algorithm exhibits better performance when the number of logical processes assigned to each processor is small or when the workload becomes significant. In models with large number of logical processes, our algorithm shows only modest increase in execution time due to the overhead in the algorithm for extra bookkeeping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.