Abstract

LNA and nucleobase-modified DNA monomers are two types of building blocks that are used extensively in oligonucleotide chemistry. However, there are only very few reports in which these two monomer families are used alongside each other. In the present study we set out to characterize the biophysical properties of oligodeoxyribonucleotides in which C5-modified 2'-deoxyuridine or C8-modified 2'-deoxyadenosine monomers are flanked by LNA nucleotides. We hypothesized that the LNA monomers would alter the sugar rings of the modified DNA monomers toward more RNA-like North-type conformations for maximal DNA/RNA affinity and specificity. Indeed, the incorporation of LNA monomers almost invariably results in increased target affinity and specificity relative to the corresponding LNA-free ONs, but the magnitude of the stabilization varies greatly. Introduction of LNA nucleotides as direct neighbors into C5-pyrene-functionalized pyrimidine DNA monomers yields oligonucleotide probes with more desirable photophysical properties as compared to the corresponding LNA-free probes, including more intense fluorescence emission upon target binding and improved discrimination of single nucleotide polymorphisms (SNPs). These hybrid oligonucleotides are therefore promising probes for diagnostic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.