Abstract

A model of population growth and dispersal is considered where the spatial habitat is a lattice and reproduction occurs generationally. The resulting discrete dynamical system exhibits velocity locking, where rational speed invasion fronts are observed to persist as parameters are varied. In this article, we construct locked fronts for a particular piecewise linear reproduction function. These fronts are shown to be linear combinations of exponentially decaying solutions to the linear system near the unstable state. Based upon these front solutions, we then derive expressions for the boundary of locking regions in parameter space. We obtain leading order expansions for the locking regions in the limit as the migration parameter tends to zero. Strict spectral stability in exponentially weighted spaces is also established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.