Abstract

Photothermal radiometry allows for remote measurement of local harmonic heat transport where the phase angle (between remote optical energy deposition and resulting temperature modulation) is sensitive to subsurface features or defects. Phase sensitive modulation thermography (or ‘lock-in thermography’) combines the advantages of photothermal radiometry with the fast technique of infrared imaging thereby revealing hidden defects in a short time. In this paper the principle and various applications are described and analyzed. While this lock-in thermography is based on remote optical heating of the whole area of interest, one can heat defects selectively with modulated ultrasound which is converted into heat by the mechanical loss angle effect which is enhanced in defect regions. This ‘ultrasonic lock-in thermography’ provides images showing defects in a way that is similar to dark field imaging in optical microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.