Abstract
We present an efficient lock-free algorithm for parallel accessible hash tables with open addressing, which promises more robust performance and reliability than conventional lock-based implementations. "Lock-free" means that it is guaranteed that always at least one process completes its operation within a bounded number of steps. For a single processor architecture our solution is as efficient as sequential hash tables. On a multiprocessor architecture this is also the case when all processors have comparable speeds. The algorithm allows processors that have widely different speeds or come to a halt. It can easily be implemented using C-like languages and requires on average only constant time for insertion, deletion or accessing of elements. The algorithm allows the hash tables to grow and shrink when needed. Lock-free algorithms are hard to design correctly, even when apparently straightforward. Ensuring the correctness of the design at the earliest possible stage is a major challenge in any responsible system development. In view of the complexity of the algorithm, we turned to the interactive theorem prover PVS for mechanical support. We employ standard deductive verification techniques to prove around 200 invariance properties of our algorithm, and describe how this is achieved with the theorem prover PVS. CR Subject Classification (1991): D.1 Programming techniques AMS Subject Classification (1991): 68Q22 Distributed algorithms, 68P20 Information storage and retrieval
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.