Abstract
The facial tissue of 9 healthy volunteers (m/f; age: 23-60y) is characterized at three different locations using a procedure combining suction measurements and 18MHz ultrasound imaging. The time-dependent and multilayered nature of skin is accounted for by adopting multiple loading protocols which differ with respect to suction probe opening size and rate of tissue deformation. Over 700 suction measurements were conducted and analyzed according to location-specific mechanical and morphological characteristics. All corresponding data are reported and made available for facial tissue analysis and biomechanical modeling. Higher skin stiffness is measured at the forehead in comparison to jaw and parotid; these two regions are further characterized by lower creep deformation. Thicker tissue regions display a tendency towards a more compliant and less dissipative response. Comparison of superficial layer thickness and corresponding mechanical measurements suggests that connective tissue density determines the resistance to deformation in suction experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.