Abstract

This paper describes a personalized k-anonymity model for protecting location privacy against various privacy threats through location information sharing. Our model has two unique features. First, we provide a unified privacy personalization framework to support location k-anonymity for a wide range of users with context-sensitive personalized privacy requirements. This framework enables each mobile node to specify the minimum level of anonymity it desires as well as the maximum temporal and spatial resolutions it is willing to tolerate when requesting for k-anonymity preserving location-based services (LBSs). Second, we devise an efficient message perturbation engine which runs by the location protection broker on a trusted server and performs location anonymization on mobile users’ LBS request messages, such as identity removal and spatio-temporal cloaking of location information. We develop a suite of scalable and yet efficient spatio-temporal cloaking algorithms, called CliqueCloak algorithms, to provide high quality personalized location k-anonymity, aiming at avoiding or reducing known location privacy threats before forwarding requests to LBS provider(s). The effectiveness of our CliqueCloak algorithms is studied under various conditions using realistic location data synthetically generated using real road maps and traffic volume data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.