Abstract

As an effective way to help users find attractive locations and meet their individual needs, point-of-interest (POI) recommendation has become an important application in location-based social networks (LBSNs). Although the geographical influence has been reported as an effective factor for improving POI recommendation accuracy, previous work mainly models it from the user perspective instead of location perspective. Intuitively, neighboring POIs tend to be visited by similar users, which implies that modeling geographical relationships from a location perspective can simulate users’ behavior more reasonably. Moreover, different from traditional recommendation problems, users in LBSNs often express their interests only by checking in different POIs, which is a kind of implicit feedback. In other words, we can easily get the POIs that the users have visited, but it is hard to get the ones that the users do not like. We cannot use a common approach to distinguish these negative values directly. Based on the above observations, this work concentrates on exploiting the geographical relationships among POIs from a location perspective for implicit problem, where a location neighborhood-aware weighted probabilistic matrix factorization is proposed (L-WMF). To be specific, the weighted probabilistic matrix factorization (WMF) that can deal with implicit feedback is first introduced as our basic POI recommendation method. Then, we incorporate the geographical relationships among POIs into the WMF as the regularization terms to exploit the geographical characteristics from a location perspective. Finally, we conduct several experiments to evaluate our L-WMF method on two real-world datasets, and the experimental results indicate that the L-WMF is more effective and can reach better performance than other related methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.