Abstract

Achieving environmental benefits is often a primary motivation for integrating renewable energy into the grid. The magnitude of generation from a solar power project is influenced by the solar resource quality, but locations with high insolation do not necessarily yield the greatest emission reduction benefits. This study simulates the power system response to 10 identical solar projects in different regions across the United States, selected to represent a wide range of solar resource quality and power grid configurations. The power grid mix is often a key determinant in offsetting CO2 , SO2 , and NOx emissions, illustrating how lower‐quality solar resources can be more effective than sunnier sites at emissions mitigation when one considers characteristics of the power grid. The analysis shows a strong relationship between emissions mitigation and the share of offset generation that is coal‐fired. The strongest correlation is shown for CO2 ; the presence or absence of emissions control equipment and the sulfur content of the coal complicates the relationship of SO2 and NOx . The emissions intensity of offset generation is insensitive to whether the solar project is fixed tilt or single‐axis tracking. When seeking to mitigate power sector emissions, the impacts of solar design considerations on the temporal profile of generation are less important than the overall amount of generation and the location of interconnection. Public policies that target only the magnitude of generation from renewables (e.g., many Renewable Portfolio Standards) or the installed cost (e.g., the Investment Tax Credit) will likely lead to suboptimal emissions mitigation. WIREs Energy Environ 2017, 6:e249. doi: 10.1002/wene.249This article is categorized under: Photovoltaics > Climate and Environment Energy and Development > Systems and Infrastructure

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.