Abstract

Ectoderm is one of the three classic germ layers in the early mouse embryo, with the capacity to develop into both the central nervous system and epidermis. Because it is a transient phase of development with few molecular markers, the early ectoderm is the least understood germ layer in mouse embryonic development. In this work, we studied the differentiation potential of isolated ectoderm tissue in response to BMP signaling at various developmental stages (E6.5, E7.0 and E7.5), and identified a transient region in the anterior-proximal side of the embryo at E7.0 that possesses the ability to become neural or epidermal ectoderm in response to the absence or presence of BMP4, respectively. Furthermore, we demonstrated that inhibition of Nodal signaling could direct the pluripotent E6.5 epiblast cells towards ectoderm lineages during differentiation in explants in vitro. Our work not only improves our understanding of ectodermal layer development in early embryos, but also provides a framework for regenerative differentiation towards ectodermal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.