Abstract

We have recently developed x-ray diffraction methods to derive the profile structure of ultrathin lipid multilayer films having one to five bilayers (e.g., Skita, V., W. Richardson, M. Filipkowski, A.F. Garito, and J.K. Blasie. 1987. J. Physique. 47:1849-1855). Furthermore, we have employed these techniques to determine the location of a monolayer of cytochrome c bound to the carboxyl group surface of various ultrathin lipid multilayer substrates via nonresonance x-ray diffraction (Pachence, J.M., and J.K. Blasie. 1987. Biophys. J. 52:735-747). Here an intense tunable source of x-rays (beam line X9-A at the National Synchrotron Light Source at the Brookhaven National Laboratory) was utilized to measure the resonance x-ray diffraction effect from the heme-Fe atoms within the cytochrome c molecular monolayer located on the carboxyl surface of a five monolayer arachidic acid film. Lamellar x-ray diffraction was recorded for energies above, below, and at the Fe K-absorption edge (E = 7,112 eV). An analysis of the resonance x-ray diffraction effect is presented, whereby the location of the heme-Fe atoms within the electron density profile of the cytochrome c/arachidic acid ultrathin multilayer film is indicated to +/- 3 A accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call