Abstract

Large-conductance, voltage- and Ca(2+)-gated potassium (BK) channels control excitability in a number of cell types. BK channels are composed of alpha subunits, which contain the voltage-sensor domains and the Ca(2+)- sensor domains and form the pore, and often one of four types of beta subunits, which modulate the channel in a cell-specific manner. beta 4 is expressed in neurons throughout the brain. Deletion of beta 4 in mice causes temporal lobe epilepsy. Compared with channels composed of alpha alone, channels composed of alpha and beta 4 activate and deactivate more slowly. We inferred the locations of the two beta 4 transmembrane (TM) helices TM1 and TM2 relative to the seven alpha TM helices, S0-S6, from the extent of disulfide bond formation between cysteines substituted in the extracellular flanks of these TM helices. We found that beta 4 TM2 is close to alpha S0 and that beta 4 TM1 is close to both alpha S1 and S2. At least at their extracellular ends, TM1 and TM2 are not close to S3-S6. In six of eight of the most highly crosslinked cysteine pairs, four crosslinks from TM2 to S0 and one each from TM1 to S1 and S2 had small effects on the V(50) and on the rates of activation and deactivation. That disulfide crosslinking caused only small functional perturbations is consistent with the proximity of the extracellular ends of TM2 to S0 and of TM1 to S1 and to S2, in both the open and closed states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.