Abstract

The environment model for the description of the location of carbonate ions in apatites predicts that approximately half of the carbonate occupies the apatite channel. This model relies on the influence of entities surrounding the carbonate on its IR spectrum and can be used to determine how various substituents affect the location and structure of that ion. Careful deconvolution (peak-fitting) of the asymmetric carbonate IR region was used to determine the percentage of A-type (channel) ions, A′-type (channel with either a Ca2+ vacancy or substitution of Na+ for Ca2+) ions, and B-type (substitution for phosphate) ions. In our previous applications of this model, we have looked at the effect of alkali metal ions, such as sodium, lithium, and potassium, the ammonium ion, and the rare earth europium ion. In the present work, we explore the incorporation of the first-row transition metal ions and find that they have little effect on the location of the carbonate ion. Like the un-substituted carbonated apatite, these apatites contain about half of the carbonate in the channel, at least in derivatives that contain up to half a mole of the metal ion per mole of apatite. Attempts to incorporate greater amounts of metal ions by aqueous ion-combination reactions generally lead to lower-resolution XRD patterns and IR spectra that produce greater uncertainties in the peak-fitting modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call