Abstract
In the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, lyotropic anions with high permeability also bind relatively tightly within the pore. However, the location of permeant anion binding sites, as well as their relationship to anion permeability, is not known. We have identified lysine residue K95 as a key determinant of permeant anion binding in the CFTR pore. Lyotropic anion binding affinity is related to the number of positively charged amino acids located in the inner vestibule of the pore. However, mutations that change the number of positive charges in this pore region have minimal effects on anion permeability. In contrast, a mutation at the narrow pore region alters permeability with minimal effects on anion binding. Our results suggest that a localized permeant anion binding site exists in the pore; however, anion binding to this site has little influence over anion permeability. Implications of this work for the mechanisms of anion recognition and permeability in CFTR are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.