Abstract

Due to the unique three-dimensional spatial structure and special electronic properties, triptycene has been applied in dye-sensitized solar cells. Herein, two dyes JY76/JY77 featuring triptycene at the different substitution position of carbazole donor have been synthesized, and location effect of triptycene on the photovoltaic performance of devices has been investigated. Lateral derived triptycene endows JY77 much more enhanced capability of impeding the interface charge recombination than JY76 which triptycene was decorated at terminal. Finally, JY77-sensitized solar cells exhibit around 20% higher power conversion efficiency (PCE) than that of JY76. The photovoltaic properties are further tuned by co-sensitization strategy, and better PCEs are obtained. Under AM 1.5G irradiation, cells fabricated by the synergic adsorption of JY77 and JY75, achieve the highest PCE of 8.01%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.