Abstract

A set D of vertices of a graph G is locating if every two distinct vertices outside D have distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u)∩D≠N(v)∩D, where N(u) denotes the open neighborhood of u. If D is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of G. A graph G is twin-free if every two distinct vertices of G have distinct open and closed neighborhoods. It is conjectured (Garijo et al., 2014 [15]) and (Foucaud and Henning, 2016 [12]) respectively, that any twin-free graph G without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.