Abstract

This paper proposes a methodology for deploying permanent Dynamic Message Signs (DMS) in a vehicular traffic network. Of particular interest is the planning problem to optimize the number of DMS to deploy in conjunction with Advanced Traveler Information Systems (ATIS), operating and maintenance cost of DMS, and incident-related user cost under random traffic incident situations. The optimal DMS location design problem discussed herein is formulated as a two-stage stochastic program with recourse (SPR). A Tabu search algorithm combined with dynamic traffic simulation and assignment approaches are employed to solve this problem. A case study performed on the Fort-Worth, Texas network highlights the effectiveness of the proposed framework and illustrates the affect factors such as demand, network structure, DMS response rate, and incident characteristics have on the solution. The numerical results suggest that designing and deploying DMS and ATIS jointly is more cost-effective and efficient than the sequential build-out of the two from the system management perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call