Abstract

Auditory mismatch negativity, the brain's change-detection response, has been shown to be more sensitive than other early auditory cortex responses to the hemispheric specialization of speech processing. The present study used magnetoencephalography to assess hemispheric differences in cortical evoked responses during auditory spatial processing. We compared N1m to lateralized vowels presented with equal probabilities with mismatch fields (MMNm) to rare lateralized noises interspersed in a sequence of frequent midline sounds. Both N1m and MMNm dipole amplitudes were higher in the hemisphere contralaterally to the side of sound lateralization, but this effect was about four times bigger in the mismatch paradigm. Moreover, only MMNm dipoles showed shorter latencies in the hemisphere contralaterally to stimulation. Apparently stimulus changes activate specialized auditory networks more strongly than non-deviant events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.